

Francesco Focacci

Università Telematica E-campus

COMPOSITI A MATRICE CEMENTIZIA PER IL RINFORZO DI STRUTTURE E INFRASTRUTTURE

MATERIALI DI RINFORZO

FIBRE	Res. a trazione (N/mm²)	Dil. di rottura (‰)	Modulo elastico (GPa)	Spessore nominale (mm)
Carbon net	3500	15	240	0.047 (dir. 1 and 2)
PBO net	5800	21.5	270	0.046 (dir.1) 0.022 (dir. 2)
Carbon sheet	3500	15	240	0.17

TONNARA DI FAVIGNANA (2004)

Volte nei "magazzini generali"

VIADOTTI ROMA-NAPOLI (2010-2011-2012)

• Pile di muratura • Volte di calcestruzzo non armato

Quadro normativo

ACI 549.4R-13

Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures

Reported by ACI Committee 549

American Concrete Institute®

American Concrete Institute®

Berardi, F.; Focacci, F.; Mantegazza, G.; and Miceli, G., 2011, "Rinforzo di un Viadotto Ferroviario con PBO-FRCM," *Proceedings, 1° Convegno Nazionale Assocompositi*, Milan, Italy, May 25-26. (in Italian)

D'Ambrisi, A. D.; Feo, L.; and Focacci, F., 2012, "Bondslip Relations for PBO-FRCM Externally Bonded to Concrete," *Composites. Part B, Engineering*, V. 43, No. 8, pp. 2938-2949.

D'Ambrisi, A. D.; Feo, L.; and Focacci, F., 2013, "Experimental Analysis on Bond Between PBO-FRCM Strengthening Materials and Concrete," *Composites. Part B, Engineering*, V. 44, No. 1, pp. 524-532.

D'Ambrisi, A. D., and Focacci, F., 2011, "Flexural Strengthening of RC Beams with Cement Based Composites," *Journal of Composites for Construction*, V. 15, No. 5, pp. 707-720.

Fig. 4.1.2a—(a) Bridge structure with view of scaffolding; and (b) installation of FRCM.

Fig. 4.1.2b—Details of work in progress (second fiber mesh).

CNR - Commissione di studio per la predisposizione e l'analisi di norme tecniche relative alle costruzioni

CNR DT215

CONSIGLIO NAZIONALE DELLE RICERCHE

COMMISSIONE DI STUDIO PER LA PREDISPOSIZIONE E L'ANALISI DI NORME TECNICHE RELATIVE ALLE COSTRUZIONI

➡ Fase di inchiesta pubblica finita il 31 gennaio 2019

→ Istruzioni per la progettazione

Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica

CNR-DT 215/2018

ROMA - CNR 23.10. 2018

Rinforzo di maschi murari

- pressoflessione nel piano
- taglio nel piano piano

- pressoflessione fuori piano

Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica

Rinforzo di volte

Vista dell'intradosso

Rinforzo cemento armato

 ΠF

 L_2

L

- flessione e taglio

Lı

Istruzioni er la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica

 L_1

В

H

_FRCM,

n strati

- confinamento

ELEMENTI DI PROGETTAZIONE

Rinforzo a flessione di travi di calcestruzzo armato

 $\Rightarrow \text{ dilatazione di delaminazione}$ $\Rightarrow \text{ dilatazione preesistente (supporto)}$ $\Rightarrow \text{ Curvatura ultima} \quad \chi_u = \frac{\varepsilon_{fe} + \varepsilon_0}{H - x_n}$ $\Rightarrow \text{ Asse neutro } B \cdot \int_{0}^{x_n} \sigma_c(\chi_u \cdot \xi) \cdot d\xi = A_s \cdot f_y + A_f E_f \cdot \varepsilon_{fe}$ $\Rightarrow \text{ Modulo elastico}$ $\Rightarrow \text{ Momento resistente}$ DELLE sole FIBRE $M_R = B \cdot \int_{0}^{x_n} \sigma_c(\chi_u \cdot \xi) \cdot \xi d\xi + A_s \cdot f_{yd} \cdot (d - x_n) + A_f E_f \cdot \varepsilon_{fe} \cdot (H - x_n)$ $\Rightarrow \text{ Stress}$

Rinforzo a flessione di travi di calcestruzzo armato

RINFORZO A FLESSIONE

VERIFICHE

• PRESSOFLESSIONE

CNR DT 200

$$f_{md} = \frac{f_{mk}}{\gamma_m} \qquad \epsilon_{mu} = 0.35\%$$

$$\alpha = 0.85$$
 $\beta = 0.6 \div 0.8$

 ε_{fd} limite determinato tenendo conto della delaminazione

ROTTURA RINFORZO

ROTTURA MURATURA

Quadro normativo

Linea Guida per la identificazione, la qualificazione ed il controllo di accettazione di compositi fibrorinforzati a matrice inorganica (FRCM) da utilizzarsi per il consolidamento strutturale di costruzioni esistenti
Parametri meccanici di calcolo

CONSIGLIO NAZIONALE DELLE RICERCHE

COMMISSIONE DI STUDIO PER LA PREDISPOSIZIONE E L'ANALISI DI NORME TECNICHE RELATIVE ALLE COSTRUZIONI

Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica

CNR-DT 215/2018 ROMA - CNR 23.10.2018

Linea: **Temi generali,** settore di ricerca: **Materiali innovativi** per interventi infrastrutturali su costruzioni esistenti.

(UR29: Uniecampus)

Reluis ሓ

Formulazioni

di progetto

- Quasi tutte le formulazioni di progetto includono la dicitura «in mancanza di specifica sperimentazione....»
- → Questo è dovuto al fatto che diversi FRCM presentano marcate differenze sotto il profilo meccanico, in termini di
 - proprietà delle fibre
 - proprietà della matrice
 - adesione fibre-matrice
 - geometria della rete
 - modalità di delaminazione

SPERIMENTAZIONI

- Prove di flessione di travi e solette di calcestruzzo armato
- ➡ Prove di taglio di travi di calcestruzzo armato
- Prove confinamento su pilastri
- Prove aderenza (bond) su calcestruzzo

- Prove di archi e volte
- Prove di pannelli murari (compressione diagonale)
- Prove su tavola vibrante di macroelementi
- Prove aderenza (bond) su muratura

Round robin test (Rilem Technical Committee 250-CSM)

Osservazione: la crisi degli elementi strutturali (calcestruzzo e muratura) rinforzati avviene per delaminazione del rinforzo

Täljsten, B., Blanksvärd, T. (2007). Mineral-based bonding of carbon FRP to strengthen concrete structures. J.Composites for Construction, 11(2),120–8.

Ombres, L. (2012). Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar. Engineering Fracture Mechanics, 81, 94–109.

Ombres, L. (2011). Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material. Composite Structures, 94(1), 143–155.

 Osservazione preliminare: la crisi degli elementi strutturali (calcestruzzo e muratura) rinforzati avviene per delaminazione del rinforzo

Napoli, A. Realfonzo, R. (2015). Reinforced concrete beams strengthened with SRP/SRG systems: experimental investigation. Construction and Building Materials, 93, 654–677.

STRENGTHENING SETUP - SECOND CAMPAIGN

Concrete compr. strength (cubic) (N/mm ²)	63.66
Steel yielding stress (N/mm ²)	476.17
Steel tensile strength (N/mm ²)	616.73

MATERIALS

FAILURE MODES

PBO-FRCM shorter beams (b) C-FRCM longer beams

(a) CFRP longer beams

(c) C-FRCM longer beams PBO-FRCM shorter beams

(d) PBO-FRCM longer beams

FAILURE MODES

FRCM

FRP

→ Gerarchia delle resistenze di interfaccia

• Non è immediato stabilire a quale superfice sia associato il carico di collasso più piccolo

Experimental work

• Brick masonry arches (1/2 scaled)

Ricerca in collaborazione con M. De Stefano, L. Rovero, V. Alecci, G. Stipo

Thickness of the arches: 95 mm

Experimental work

• Strengthening materials

load cell-

steel plate

triangular shaped brick

Specimen	Pos.	Str. material	t _f [mm]	A _f [mm²]
1-US				
2-US				
1-ES	Extr.	PBO-FRCM	0.014	1.33
2-ES	Extr.	PBO-FRCM	0.014	1.33
1-PM	Intr.	PBO-FRCM	0.014	1.33
2-PM	Intr.	PBO-FRCM	0.014	1.33
1-CM	Intr.	C-FRCM	0.047	4.47
2-CM	Intr.	C-FRCM	0.047	4.47
1-CP	Intr.	C-FRP	0.17	16.15
2-CP	Intr.	C-FRP	0.17	16.15

-manual flywheel

displacement transducers

ННННННН

composite materials

brick masonry arch

PBO-FRCM

C-FRCM

Results: unstrengthened vs. PBO-FRCM extrados strengthened

Specimen	Pos.	Str. material	t _f [mm]	F _{max} [N]	$rac{F_{\max}}{F_{\max 0}}$
1-US				910	
2-US				1066	
1-ES	Estr.	PBO-FRCM	0.014	4813	1 05
2-ES	Estr.	PBO-FRCM	0.014	4968	4.93

Results: unstrengthened vs. FRCM intrados strengthened

Specimen	Pos.	Str. material	t _f [mm]	F _{max} [N]	$rac{F_{\max}}{F_{\max 0}}$
1-US				910	
2-US				1066	
1-PM	Intr.	PBO-FRCM	0.014	5280	5 40
2-PM	Intr.	PBO-FRCM	0.014	5672	5.45
1-CM	Intr.	C-FRCM	0.047	7140	7 09
2-CM	Intr.	C-FRCM	0.047	6989	7.08

First crack (PBO-**FRCM)**

Collapse (C-**FRCM)**

Results: FRCM vs. FRP intrados strengthened

15069

📥 Comparison

Specimen	Pos.	Str. material	t _f [mm]	F _{max} [N]	$rac{F_{ ext{max}}}{F_{ ext{max}0}}$
1-US				910	
2-US				1066	
1-PM	Intr.	PBO-FRCM	0.014	5280	5 40
2-PM	Intr.	PBO-FRCM	0.014	5672	5.45
1-CM	Intr.	C-FRCM	0.047	7140	7 09
2-CM	Intr.	C-FRCM	0.047	6989	7.00
1-CP	Intr.	C-FRP	0.17	15198	15.00
2-CP	Intr.	C-FRP	0.17	14940	13.09

0.017

Analytical evaluation of the collapse load

• Un-strengthened arches

• Analytical evaluation of the collapse load

• Strengthened arches (intrados)

Analytical evaluation of the collapse load

• Extrados strengthened arches (PBO-FRCM)

• Maximum fiber strain from **beam tests** performed by

Alecci V, De Stefano M, Luciano R, Rovero, L, Stipo G. Experimental Investigation on Bond Behavior of Cement-Matrix-Based Composites for Strengthening of Masonry Structures. J Compos Constr 2015

L = 250 mm

Specimen	Maximum force F_{max} (N)	Bond capacity F_{db} (N)
1-F250	2436	5239
2-F250	2612	5618
3-F250	2265	4872
4-F250	2279	4901
5-F250	2143	4609
6-F250	2483	5339
7-F250	2369	5096
8-F250	2419	5202
9-F250	2382	5123
10-F250	2346	5045
11-F250	2382	5123
12-F250	2420	4989

Collapse mechaism

Thrust line

Analytical evaluation of the collapse load

• Intrados strengthened arches (PBO-FRCM and C-FRCM)

Maximum fiber strain from double-lap shear tests performed by

Alecci V, De Stefano M, Luciano R, Rovero, L, Stipo G. Experimental Investigation on Bond Behavior of Cement-Matrix-Based Composites for Strengthening of Masonry Structures. J Compos Constr 2015

VIADOTTO km 32+926, Roma-Formia Rinforzo con FRCM

• Pile di muratura

• Volte di calcestruzzo non armato

CARICHI VERTICALI

RESISTENZA A COMPRESSIONE FINITA

CONFIGURAZIONE DI RINFORZO

POSSIBILI MECCANISMI DI COLLASSO

• MECCANISMO 1: Carichi verticali/Azione sismica

POSSIBILI MECCANISMI DI COLLASSO

• MECCANISMO 2: Carichi verticali

• MECCANISMO 2: Sistemi singoli

RISULTATI: Meccanismo 2, senza sisma

• CONCLUSIONI: Cosa differenzia i diversi materiali FRCM?

→ Parametri meccanici delle fibre → Modulo elastico (delle fibre)

 Modalità di trasferimento delle forze all'interfaccia per mezzo di tensioni tangenziali

Informazioni di grande dettaglio dai produttori di FRCM Parametri di calcolo per flessione, taglio, confinamento, ecc